
# Exclusive processes and GPDs with EIC: Status report

C. Weiss (JLab), ELIC Science Meeting 21–Mar–08

- Exclusive processes: Physics interest
- Collider energies  $(W > 10 \, \text{GeV})$ : "Diffractive" vs. "non-diffractive" channels
- Cross section parametrization for  $ep \to e'\pi^+ n$
- First counting rate estimates for EIC [→ Presentation by T. Horn]
- Work in progress, future plans

## Exclusive processes: Physics





• Study of high– $Q^2$  exclusive processes essential part of physics program for ep collider

$$\begin{array}{cccc} e+p & \rightarrow & e'+\gamma+p & & W^2,Q^2\gg 1\,\mathrm{GeV}^2 \\ & & e'+\mathrm{meson}+N & & |t|<1\,\mathrm{GeV}^2 \end{array}$$

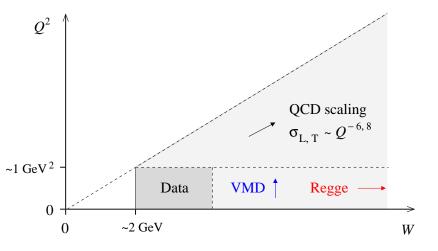
- → Reaction mechanism: QCD factorization
- → Information about GPDs, meson wave functions (baryon/meson structure)
- Experimental challenge
  - Small cross sections,  $\sigma(\text{meson} + N) \sim 1/Q^8$
  - Detection of recoil nucleon
  - Differential measurements in  $x,Q^2,t$

[cf. GPD White Paper for NSAC Long-Range Plan, presented at Rutgers Town Meeting Jan-07]

## Exclusive processes: Collider energies

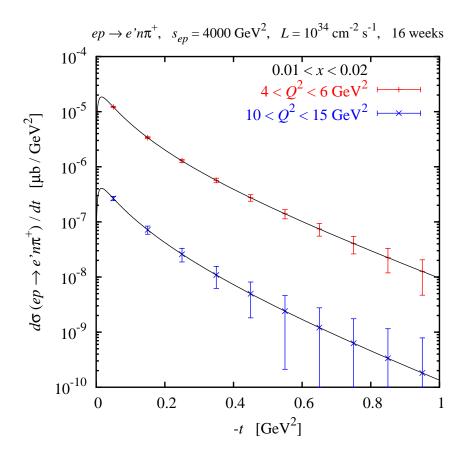
|                  | "diffractive"<br>(vacuum exchange)        | "non-diffractive"<br>(quantum number exchange)      |
|------------------|-------------------------------------------|-----------------------------------------------------|
| Channel          | $\gamma p, \  ho^0 p, \ J/\psi  p, \dots$ | $\pi^+ p, \ \pi^0 p, \ K\Lambda, \ \rho^+ n, \dots$ |
| GPDs             | gluon                                     | non-singlet quark                                   |
| Cross<br>section | rises with energy                         | drops with energy                                   |
| Interest         | gluon imaging<br>of nucleon               | spin/flavor structure<br>of quark GPDs              |
|                  | "one channel"                             | "many channels"                                     |

## Exclusive processes: EIC potential and simulations


#### Diffractive channels

- Data/experience from HERA:  $\gamma p \, (\text{DVCS}), \ \rho^0 p, \ \phi p, \ J/\psi \, p$
- DVCS simulations [A. Sandacz 06/07; cf. GPD/EIC White Paper]
- Certainly feasible even with modest luminosity ( $10^{33}$ cm<sup>-2</sup> $s^{-1}$ ) Discussion about "quantitative" issues

### Non-diffractive channels


- New territory for collider!
- Much more demanding in luminosity
- Physics interest closely related to JLab 6 + 12 GeV program: Quark spin/flavor distributions, nucleon/meson structure
- Feasibility study of  $\pi^+ n, \ \pi^0 p, \ K\Lambda$  [A. Bruell, T. Horn, C. Weiss, V. Guzey, in progress]

## $\pi^+ n$ at EIC: Cross section parametrization



- Phenomenological parametrization based on
  - Regge parametrization of  $Q^2=0$  data [cf. Guidal, Laget, Vanderhaeghen 98]
  - Vector meson dominance  $(Q^2 < 1 \text{GeV}^2)$
  - QCD scaling  $(W^2, Q^2 \gg 1 \text{GeV}^2)$
- Correct asymptotic behavior at large  $W, Q^2$
- Describes  $\sigma_T$  and  $\sigma_L$  ( $\leftrightarrow$  GPDs)
- Simple analytic forms, suitable for MC
   [C. Weiss, Technical Report 08]

## $\pi^+ n$ at EIC: First estimates



Luminosity  $10^{34} \text{cm}^{-2} s^{-1}$ 

Running time 16 weeks

Energy 10 on 100 GeV

Detection 100%

[C. Weiss, EIC Collaboration Meeting, Stony Brook University, 07–Dec–07]

- Many uncertainties (model dependence, extrapolations)
- No proper integration ( $d\sigma \times$  bin size)
- Seems feasible at not too small  $x~(\sim 0.05-0.1)$

Work in progress [→ EIC Collaboration meeting May–08]

- Extend parametrization to  $\pi^0 p$ ,  $K\Lambda$
- Full MC simulations  $[\rightarrow T. Horn]$

## Future extensions

- Develop GPD-based parametrizations, extract nucleon structure information from simulated data
- Other non-diffractive channels  $(\rho^+ n, K^*\Lambda, \dots),$ polarization observables
- Diffractive channels at high luminosity: DVCS + BH,  $\rho^0 p$ ,  $\phi p$ ,  $J/\psi p$ .